МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВПО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

МиКМ

_ проф. А.В. Ковалев 22.03.2024г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.21 Математическое моделирование

- 1. Шифр и наименование направления подготовки / специальности:
- 01.03.03 Механика и математическое моделирование
- 2. Профиль подготовки: Математическое моделирование и компьютерный инжиниринг
- 3. Квалификация (степень) выпускника: бакалавр
- 4. Форма обучения: Очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

Механики и компьютерного моделирования

6. Составители программы:

Бондарева Мария Владимировна, аспирант, факультет ПММ, кафедра МиКМ, <u>Dobrosotska-</u> ya masha@mail.ru

Ковалев Алексей Викторович, доктор физ-мат. наук, профессор, факультет ПММ, кафедра МиКМ, kovalev@amm.vsu.ru

7. Рекомендована: НМС факультета ПММ протокол №5 22.03.2024г.

8. Учебный год: 2027 - 2028 Семестр(ы): 7

9. Цели и задачи учебной дисциплины:

Целью изучения дисциплины является формирование комплекса знаний и практических навыков, необходимых для решения прикладных задач в области моделирования различных рабочих процессов в пакетах Ansys Static Structural, Ansys Thermal. Задачи дисциплины: изучение основных понятий термодинамики; изучение основ моделирования контактных задач, задач растяжения/сжатия и кручения с использованием современных вычислительных средств. Приобретение навыков использования современных компьютерных технологий для моделирования различных рабочих процессов в пакетах Ansys Static Structural, Ansys Thermal; приобретение навыков импортирования геометрических моделей и сеток; приобретение навыков формирования математической модели; - приобретение навыков адекватного определения граничных условий; приобретение навыков использовать имеющиеся средства для обработки и удобного представления результатов расчета.

10. Место учебной дисциплины в структуре ООП:

Дисциплина Б1.О.21 «Математическое моделирование» входит в основную часть профессионального цикла. Для освоения дисциплины необходимы знания следующих дисциплин: алгебра, аналитическая геометрия, теоретическая механика, теория упругости, сопротивление материалов, пакеты инженерного анализа, алгоритмы построения расчетных сеток. Освоение дисциплины позволит в дальнейшем изучать специальные курсы по профилю полготовки.

11. Компетенции обучающегося, формируемые в результате освоения дисциплины:

Код	Название компе-	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
, ,	тенции	, , ,	,, 1()	
ОПК-1	способностью ре- шать стандартные задачи професси- ональной деятель- ности на основе информационной и библиографиче- ской культуры с применением ин- формационно- коммуникацион- ных технологий и с учетом основных требований ин- формационной безопасности	ОПК-1.1	Применение информационно- коммуникационных технологий для решения задач профессиональной деятельности Решение классических задач мсс с применением современных технологий	Знать: современные способы поиска информации в сети интернет. Уметь: формировать запросы поиска необходимой информации Владеть: навыками работы с большим объемом профессиональной информации. Знать: методику решения задач мсс. Уметь: применять полученные знания для решения задач Владеть: навыками работы с пакетами прикладных программ для решения задач
ОПК-4	способностью находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительных систем	ОПК-4.1	Поиск и систематизация знаний в области современных пакетов трехмерного моделирования. Способность использовать программные средства для решения типовых задач.	Знать: современные способы поиска информации в сети интернет. Уметь: формировать запросы поиска необходимой информации Владеть: навыками работы с большим объемом профессиональной информации. Знать: основные понятия вычислительной гидродинамики; основы моделирования турбулентных течений средствами современной вычислительной гидродинамики Уметь: формировать математическую модель, определять параметры граничных условий, задавать физические свойства веществ, задавать параметры решения задачи Владеть: навыками разработки фи-

	1		T	1
				зико-математических моделей ис- следуемых процессов; навыками решения физико-математических моделей исследуемых процессов; навыками самостоятельного получе- ния новых знаний по моделирова- нию рабочих процессов
		ОПК-4.3	Использование современных информационных технологий, программных средств для решения задач в профессиональной области	Знать: возможности и особенности прикладных пакетов программ ANSYS CFX. Уметь: создавать и импортировать геометрические модели; применять сеточный генератор для построения геометрической и сеточной моделей для анализа различных вариантов решений заданной задачи; использовать программное обеспечение ANSYS CFX для анализа вариантов решений заданной задачи Владеть: навыками решения прикладных задач и оптимизации конструктивных схем проточной части с помощью прикладных пакетов ANSYS CFX; навыками анализа вариантов решений, разработки и поиска компромиссных решений.
ПК-2	способностью математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики и механики	ПК-2.1	Способен использовать методы математического и алгоритмического моделирования при решении задач мсс	Знать: методы математического и алгоритмического моделирования при решении задач мсс Уметь: использовать методы математического и алгоритмического моделирования при решении задач мсс. Владеть: навыками работы с пакетами математичкого моделирования
		ПК-2.2	Применять и развивать адекватные методы решения задач	Знать: постановки, теоретические основы и методы решения профессиональных задач Уметь: ставить задачи, разрабатывать проограмму исследования Владетьнавыками постановки и разработки программ исследования
ПК-4	готовность использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явле-	ПК-4.1	Способен к постижению основ математических моделей реального объекта	Знать: основы математических моделей реального процесса или объекта. Уметь: постигать основы математических моделей реального объекта. Владеть: навыками применения моделирования для построения объектов и процессов, предсказания их свойств
	ний реального мира	ПК-4.2	Способен к обработке и интерпретации полученных результатов моделирования	Знать: основные способы обработки результатов компьютерного моделирования Уметь: подбирать средства и методы для постановки и решения задач Владеть: методикой проведения исследования и способами анализа результатов.

TTT 2 - C		TTT 6 6	T a	I n
ПК-6	способностью ис-	ПК-6.1	Способен использовать	Знает: основные методы решения
	пользовать мето-		современные пакеты	задач.
	ды математиче-		прикладных программ	Умеет: выбирать необходимое про-
	ского и алгорит-		для решения задач	граммное обеспечение для решения
	мического моде-			задачи.
	лирования при			Владеет: основными навыками ре-
	решении теорети-			шения задач с использованием при-
	ческих и приклад-			кладного программного обеспечения
	ных задач	ПК-6.2	Обладать способностью	Знать: численные методы алгебры,
			создавать и исследовать	решения дифференциальных урав-
			новые математические	нений.
			модели	Уметь: алгоритмизировать постав-
				ленную задачу, использовать воз-
				можности интернет-ресурсов и паке-
				тов прикладных программ
				Владеть: способами реализации и
				расчета поставленной задачи
ПК-7	способностью ис-	ПК-7.1	Способен к обработке и	Знать: основные способы обработки
	пользовать мето-		интерпретации получен-	результатов компьютерного модели-
	ды физического		ных данных	рования
	моделирования			Уметь: подбирать средства и методы
	при анализе про-			для обработки результатов
	блем механики			Владеть: методикой проведения ис-
				следования и способами анализа
				результатов
		ПК-7.2	Способен к проведению	Знает6 Основы проведения физиче-
			реального физического	ского эксперимента.
			эксперимента и работе в	Умеет: работать в команде
			команде	Владеет: методами проведения фи-
			nonaii/40	зического эксперимента и анализа
				полученных результатов
				nony tentibix pesymbiatob
1				

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом — 4/144.

Форма промежуточной аттестации (зачет/экзамен): ____ экзамен

13. Трудоемкость по видам учебной работы

то трудоски			Трудоемкость		
Вид учебной работы		Всего	По семестрам 7		
Контактная работ	га				
	лекции	32	32		
	практические				
в том числе:	лабораторные	32	32		
	курсовая работа				
	др. виды(при наличии)				
Самостоятельная работа		44	44		
Промежуточная аттестация (для экзамена)		36	36		
Итого:		72	72		

13.1. Содержание разделов дисциплины

No	Наименование раз-	Содержание раздела дисциплины	Реализация
----	-------------------	-------------------------------	------------

п/п	дела дисциплины		раздела дисци-
			плины с помо-
			щью онлайн-
			курса, ЭУМК
		2. Лабораторные занятия	
1.	Введение	Обзор современного программного обеспечения	«Математиче-
		предназначенного для решения задач термоди-	ское моделиро-
		намики, теории упругости и сопротивления ма-	вание»
		териалов	
2.	Ansys, платформа	Основы работы в платформе Workbench	«Математиче-
	Workbench		ское моделиро-
			вание»
3.	Ansys Thermal	Основы решения тебрмодинамических задач.	«Математиче-
			ское моделиро-
			вание»
4.	Ansys Static Structur-	Решение задач классической теории упругости,	«Математиче-
	al	решение контактных задач.	ское моделиро-
			вание»
5.	Ansys Static Structur-	Решение задач сопротивления материалов, по-	«Математиче-
	al	строение эпюр моментов и сил.	ское моделиро-
			вание»

13.2 Междисциплинарные связи

$N_{\underline{0}}$	Наименование дисциплин учебного плана, с которым	№ разделов дисциплины рабо-
Π/Π	организована взаимосвязь дисциплины рабочей про-	чей программы, связанных с ука-
	граммы	занными дисциплинами
1.	Генераторы сеток	Все разделы
2.	Пакеты инженерного анализа	Все разделы
3.	Численные методы	Все разделы

13.3 Разделы диспиплины и виды занятий

10.00	азделы дисциплины и виды запитии				
$N_{\underline{0}}$		Лекции	Лабора-	Самостоя-	Всего
Π/Π	Наименование раздела дисциплины		торные	тельная ра-	
				бота	
1.	Введение	4	4	4	12
2.	Ansys, платформа Workbench	4		4	8
3.	Ansys Thermal	8	12	12	32
4.	Ansys Static Structural	8	16	12	36
5.	Ansys Static Structural	8	8	12	28
	Итого	32	32	44	108

14. Методические указания для обучающихся по освоению дисциплины

Студентам, изучающим дисциплину, рекомендуется проведение самостоятельной работы с конспектами лекций, презентационным материалом, методическими указаниями, литературой. При использовании дистанционных образовательных технологий и электронного обучения выполнять все указания преподавателей по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ π/π	Источник
1.	Басов К.А. ANSYS для конструкторов – М.: ДМК Пресс, 2012г. – 248 с.
2	Чигарев А.В., Кравчук А.С., Смалюк А.Ф. ANSYS для инженеров. Справочное пособие – М.: Машиностроение, 2004 г. – 512 с.
3.	Басов К.А. ANSYS: справочник пользователя - М.: ДМК Пресс, 2008г 640 с.

б) дополнительная литература:

$N_{\underline{0}}$	Источник
Π/Π	ИСТОЧНИК
1	Басов К.А. ANSYS в примерах и задачах/ Под общ. ред. Д.Г. Красковского. – М.:
4.	КомпьютерПресс, 2002г. – 224 с.

в) информационные электронно-образовательные ресурсы:

2) 1111	popularionnible strekt points copasobatetibilibie poet pebit
№ п/п	Источник
1.	Электронная библиотека ВГУ www.lib.vsu.ru
2.	Национальный цифровой ресурс «РУКОНТ»
3.	ЭБС «Консультант студента»
4.	ЭБС «Лань»
5.	Онлайн-курс, размещенный на LMS-платформе edu.vsu.ru: «Математическое моделирование»

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
	Басов К.А. ANSYS в примерах и задачах/ Под общ. ред. Д.Г. Красковского. – М.:
	КомпьютерПресс, 2002г. – 224 с.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий. Для организации занятий рекомендован онлайн-курс «Математическое моделирование», размещенный на платформе Электронного университета ВГУ (LMS moodle), а также Интернет-ресурсы, приведенные в п.15в.

18. Материально-техническое обеспечение дисциплины:

Учебные аудитории для проведения лекционных и практических занятий, использование средств мультимедиа для визуализации решения задач

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

	№ п/п	Наименование раз- дела дисциплины	Компе-	Индикатор(ы) достижения	Оценочные средства
L	11/11	(модуля)	тепции(и)	компетенции	

№ п/п	Наименование раздела дисциплины (модуля)	Компе-тенция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Введение	ОПК-1 ОПК-4	ОПК-1.1 ОПК-4.1 ОПК-4.2	Домашние задания
2.	Ansys, платформа Workbench	ОПК-1 ОПК-4	ОПК-1.2 ОПК-4.1 ОПК-4.2	Лабораторные задания/домашние задания
3.	Ansys Thermal	ОПК-1 ПК-2 ПК-4 ПК-6 ПК-7	ОПК-1.1 ПК-2.1 ПК-4.2 ПК-6.1 ПК-7.2	Лабораторные задания/домашние задания
4.	Ansys Static Structural	ОПК-1 ПК-2 ПК-4 ПК-6 ПК-7	ОПК-1.2 ПК-2.2 ПК-4.2 ПК-6.1 ПК-7.1	Лабораторные задания/домашние задания
5.	Ansys Static Structural	ОПК-4 ПК-2 ПК-4 ПК-6 ПК-7	ОПК-1.2 ПК-2.1 ПК-4.2 ПК-6.1 ПК-725	Лабораторные задания/домашние задания
	Промежуточн форма конт		Выполнение лабораторных работ	

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

Практикоориентированные задания/домашние задания

(наименование оценочного средства текущего контроля успеваемости)

Перечень заданий из задачников и пособий из п.16

Проводится путем проверки выполненных упражнений

1 7				
Оценка	Критерии оценок			
Зачтено	Правильное выполнение трех лабораторных работ.			
Незачтено	Неправильное или невыполнение трех лабораторных работ.			

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью оценки выполнения студентом первой лабораторной работы.